News Ticker

Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD

This post was originally published on this site

Publication date: December 2018

Source: Renewable Energy, Volume 129, Part A

Author(s): B. Dose, H. Rahimi, I. Herráez, B. Stoevesandt, J. Peinke


This paper presents a fluid-structure coupled simulation tool for high-fidelity simulations of wind turbine rotors. Coupling the open source Computational Fluid Dynamics (CFD) code OpenFOAM and the inhouse structural solver BeamFOAM, the developed tool allows the analysis of flexible wind turbines blades by means of CFD without a significant increase in computational costs. To demonstrate the capabilities of the coupled solver, the aero-elastic response of the NREL 5 MW reference wind turbine is computed for various conditions and specific results are compared to findings of other authors. The solver framework is then used to investigate the effect of blade deformations on aerodynamic key parameters such as power, thrust and sectional forces. It is shown, that the structural deformations have a clear influence on the aerodynamic rotor performance. Especially for the case of yawed inflow, significant implications can be observed in terms of loads and local induction factors. Compared to the fluid-structure coupled framework, the rigid CFD solver underpredicts the forces acting on the blades for most of the cases. Consequently, the presented results are expected to contribute to improve the correction models used in aerodynamic models of lower fidelity like those based on the Blade Element Momentum theory.

Leave a comment

Your email address will not be published.