Small signal stability analysis for different types of PMSGs connected to the grid


Determining all oscillation modes for PMSG-based WTGS connected to power grid.

Categorizing all oscillation modes and find the relative participation of system variables in each oscillation mode.

Evaluating the influence of various initial operating states on all oscillation modes.


Small signal stability of permanent magnet synchronous generator (PMSG)-based wind turbines connected to the power grid should be studied properly in order to facilitate damping strategy design. In this paper, unified small-signal models for different types of PMSGs are developed to study their small-signal stability. The models are composed of mechanical systems, electrical systems and control systems. A two-mass shaft model for the mechanical system is provided to analyze the dynamic and steady-state behaviors of the wind turbine and generator rotor. Meanwhile, PMSG, converter system and transmission line are separately modeled to build unified small-signal models for three PMSG-based wind turbine generator systems (WTGS). Then, based on unified small-signal models, eigenvalue analysis is conducted to determine the relation between different oscillation modes and state variables through calculating participation factors. With modal analysis, the developed small signal models are able to find out all types of oscillation modes for PMSGs connected to the power grid, which are subsynchronous oscillation (SSO), subsynchronous control interaction (SSCI) and low-frequency oscillation, including frequency and damping of each oscillation mode. Different initial values of the small signal models can influence both frequencies and damping ratios of oscillation modes, which lay basis for further damping strategy study.


  • Converter system;
  • Eigenvalue analysis;
  • PMSG-based wind turbine;
  • Small-signal stability;
  • Two-mass shaft model

Be the first to comment

Leave a Reply

Your email address will not be published.