Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil


Zeolite based catalyst was prepared from zeolite tuft by impregnation.

Chemistry and the texture properties of the catalyst were studied.

The prepared catalyst was used for Biodiesel production.

Two steps impregnation were more efficient for catalyst preparation.


In the present work, zeolite based catalyst was prepared from zeolite tuft by impregnation methods. The zeolite tuft was initially treated with hydrochloric acid (16%) and then several KOH/zeolite catalysts were prepared by impregnation in KOH solutions. Various solutions of KOH with different molarities (1–6 M) were used. Further modification for the catalyst was performed by a 2nd step impregnation treatment by heating and stirring the KOH/zeolite to 80 °C for 4 h. The zeolite tuft and the prepared catalysts were characterized by several analytical techniques in order to explore their physicochemical properties. These tests include: X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), Zero point of Charge (PHzpc), Fourier Transform Infrared (FT-IR), Energy-dispersive X-Ray analysis (EDX) and X-Ray Diffraction (XRD). The catalysts were then used for transesterification of waste sunflower vegetable oil in order to produce biodiesel. Among the different catalysts prepared, the 1–4M KOH/TZT catalyst provided the maximum biodiesel yield of 96.7% at 50 °C reaction temperature, methanol to oil molar ratio of 11.5:1, agitation speed of 800 rpm, 335 μm catalyst particle size and 2 h reaction time. The physicochemical properties of the produced biodiesel comply with the EN and ASTM standard specifications.

Graphical abstract


  • Biodiesel;
  • Zeolite based catalyst;
  • Impregnation;
  • Transesterification

Be the first to comment

Leave a Reply

Your email address will not be published.